Практика прогнозирования

Русские идут (Прогноз или Prognoz)

0

Недавно познакомился с очень интересным решением от компании Прогноз. Решение разработано в Перми и история компании очень напоминает историю компании SAS. Решение российского разработчика очень интересно, потому что аккумулируют в себя действительно многие модные фичи. Компания уделяет большое внимание визуалу и функциям управления. Имеет очень симпатичный мобильный клиент. Конечно, буду справедлив и воздержусь о том, чтобы называть эту платформу BI-платформой. Скорее я бы сравнивал его с многими решениями, построенными на базе OLAP. В этом классе решений я бы их особо выделил.

Компания ставит себе действительно амбициозные задачи по превращению себя в глобального мегавендора, и стоит отметить, что попасть в квадрат Гартнера наверное дорогого стоит. Да и спецы Гартнера пока скорее относят эту платформу к нишевым решениям.

Очень хочется надеяться, что компания не затеряется на фоне лидеров.  Посмотрим на динамику в следующем году.

С точки зрения ценовой политики у них все хорошо. Мегавендоры значительно дороже и менее гибки в тарифной политике. В прогнозе как раз есть большое пространство для маневра и оптимизации затрат.

Кроме этого, я бы выделил русскую техподдержку 24 на 7. Для России, это действительно очень круто, потому как многие трабл тикеты мегавендорами отрабатываются не очень оперативно.

Ну для затравки статья рекламного содержания. Пока без моих комментариев. После детального изучения платформы отпишусь по плюсам и минусам. Минусы, как в любом решении, тоже есть, но не хочется быть голословным. Но я бы не сказал, что супер критичные. Все зависит от непосредственного кейса. Для некоторых кейсов, решение будет близким к идеальному. 

PS Если вам интересно, могу рассказать подробнее. Кроме этого, помогу получить скидку на решение и подобрать модули для оптимизации ваших затрат. Пишите на cases@fsecrets.ru.

 

Вот как они себя описывают (по материалам cnews.ru)

Prognoz Platform: ставка на простоту и функциональность

Prognoz Platform: ставка на простоту и функциональность

Сегодня одним из основных требований, предъявляемых пользователями к BI-системам, является простота в использовании. Топ-менеджменту нужны мощные, но при этом интуитивно понятные инструменты, позволяющие в режиме реального времени обработать необходимый объем информации и представить результаты в удобном для анализа виде. Этой тенденции рынка полностью соответствует программная платформа Prognoz Platform от компании «Прогноз»: ее основные инструменты, включая модули продвинутой аналитики, просты в освоении и удобны в использовании.

Инструмент для эффективного решения управленческих задач

Prognoz Platform – это BI-платформа, предназначенная для создания бизнес-приложений «под ключ», сочетающая дружественный интерфейс и высокую производительность на любых объемах данных. В продукте реализован принцип Self-Service BI («бизнес-аналитика для самообслуживания»), позволяющий конечным пользователям самостоятельно настраивать приложения без привлечения IT-специалистов. Аналитические системы, созданные на базе Prognoz Platform – это гибкие и функциональные решения, которые позволяют осуществлять всесторонний анализ накопленной информации, а также строить модели с учетом множества факторов, что значительно повышает качество прогнозных оценок.

Одна из ключевых особенностей Prognoz Platform – это универсальность. Так, платформа предоставляет инструменты, доступные как в традиционных пользовательских приложениях (настольное и веб-приложение), так и на мобильных устройствах, а также в «облачной» архитектуре. В состав Prognoz Platform входят как традиционные BI-инструменты для сбора и анализа данных, построения отчетов и статистического анализа, так и продвинутые инструменты моделирования и прогнозирования. Платформа является универсальным инструментом и по спектру отраслей, в которых используются решения на ее основе: сегодня аналитические системы на базе Prognoz Platform востребованы в корпоративном, финансовом и государственном секторах.


Средства платформы обеспечивают сбор, верификацию и консолидацию больших объемов данных из разнородных источников, а также позволяют проводить на их основе комплексный мониторинг и анализ ключевых показателей, настраивать модели и выполнять прогнозные расчеты. Из наиболее актуальных задач, которые сегодня решаются с помощью Prognoz Platform в бизнесе, можно назвать управление рисками, формирование отчетности, планирование и бюджетирование, в том числе калькулирование фактической себестоимости по местам возникновения затрат.

Помимо пользовательских инструментов, Prognoz Platform предлагает богатые функциональные возможности для разработчиков, в том числе блоки технологического уровня. Это средства разработки и интеграционные компоненты: конструктор хранилища данных, модуль ведения НСИ, ETL, среда разработки приложений (SDK), компоненты деловой графики, средства интеграции с социальными сетями. С их помощью можно гибко настраивать репозитории метаданных, загружать данные из внешних источников, работать с нормативно-справочной информацией. Базовый уровень инфраструктуры Prognoz Platform включает модуль администрирования и информационной безопасности, сервер приложений и web-сервисы.


Единство метаданных, модульная архитектура и современные средства интеграции делают Prognoz Platform исключительно гибким и адаптивным продуктом, который можно быстро и безболезненно встраивать в существующую IT-инфраструктуру в самых разных конфигурациях, впоследствии наращивая функционал по мере необходимости. При этом лицензионная политика компании «Прогноз» позволяет клиенту выбирать только те функциональные блоки, которые требуются ему на конкретном этапе реализации BI-проекта, тем самым значительно сокращая стоимость и сроки внедрения.

Продвинутые функциональные возможности

В Prognoz Platform реализована интеграция различных функций, что соответствует одной из ключевых тенденций, которые отмечают аналитики Gartner: в рамках единой платформы и единых источников данных обеспечивается доступ и к предсказательной, и к описательной аналитике.

Платформа включает расширенный инструментарий моделирования и построения сценарных («Что будет, если…?») и целевых («Что необходимо для…?») прогнозов. В ее составе присутствуют конструктор аналитических панелей, средства оперативного анализа (OLAP) и анализа временных рядов, конструктор карт ключевых показателей (scorecards).  Для визуализации данных применяются современные средства визуализации, включая интерактивные 3D-карты, пузырьковые диаграммы и другие современные инструменты.


В Prognoz Platform реализованы самые последние технологические достижения сферы бизнес-аналитики, включая  Data Mining (интеллектуальный анализ данных), Collaborative Decision Making (интегрированные инструменты совместного принятия решений). Высокая производительность продукта обеспечивается технологиями In-Memory (обработка данных в оперативной памяти устройства) и Search-Based BI (построение запросов в текстовом виде).

Prognoz Platform «бесшовно» интегрируется с приложениями Microsoft Office: можно не только экспортировать результаты аналитической работы в Excel и Word, но и напрямую работать из Excel с хранилищем данных, используя аналитические возможности платформы. Поддерживается интеграция с портальными решениями (MS SharePoint, SAP Netweaver, IBM WebSphere) и геоинформационными сервисами (Google Maps, Microsoft Bing, OpenStreetMap).

Мобильные приложения на базе PROGNOZ Platform поддерживают динамическое отображение данных в самых разных разрезах и видах, а также работу с ними как в онлайн-, так и в офлайн-режиме. Через нативный клиент для iOS доступны инструменты OLAP, аналитические панели и средства анализа временных рядов.

Преимущества и уникальные возможности Prognoz Platform:

  • расширенные возможности визуализации, анализа, отчетности, моделирования и прогнозирования через веб-интерфейс и в режиме облачных вычислений;
  • использование продвинутых средств предсказательной аналитики и целевого прогнозирования, эффективное решение задач «что будет, если…?» и «что необходимо для…?»;
  • использование общих метаданных во всех интегрируемых компонентах, что позволяет легко импортировать, обрабатывать и публиковать большие объемы данных;
  • интегрированная среда разработки, которая обеспечивает возможность быстрого создания кастомизированных приложений;
  • гибкие средства управления безопасностью и администрирования.


В 2012 г. Prognoz Platform стала первой российской разработкой, включенной агентством Gartner в «Магический квадрант платформ бизнес-аналитики». В 2013 г. «Прогноз» повторил и упрочил свой успех в международном рейтинге, переместившись на координатной плоскости Gartner к самой верхней границе нишевых игроков и приблизившись к уровню претендентов на лидирующие позиции.

Удачи Вам!

Какая точность прогноза является приемлемой?

0

Добрый день, буквально вчера одна читательница задала очень интересный вопрос:

Необходим Ваш квалифицированный совет относительно точности прогнозирования.
Какой критерий, или коефициэнт «попадания» прогноза  является допустимым при составлении Прогноза на новый продукт в ассортиментной линейке?
Является ли коэф. 61-67% критическим?

Мой ответ звучал так:

Вообще говоря такой показатель довольно низок. НО! Тут нужно вам самим определиться, что значит низок. Продажи на новый продукт довольно вариативны, и для каких-то групп товаров и 60% считается нормальными. Другое дело купите товара больше или произведете, будет перезапас, соответственно появятся издержки на его хранение. Вообще говоря обычно продажи нового товара прогнозируют по бенчу / подобию реализации похожих групп товаров, у меня в разделе для новичков есть описание данного метода чуть подробнее.
Главное не точность прогнозирования, главное какие деньги вы потеряете на единицу ошибки и если деньги на единицу небольшие, то возможно, что и на 30% продукции не столь большие, соответственно если фирма может себе это позволить, тогда проблемы не вижу. Либо вам нужно определиться и проинвестировать, например, в разработку лучшего алгоритма прогнозирования, который позволит минимизировать ошибку прогнозирования. Но опять же добавлю рассматривайте такую задачу как «сколько денег потратить, чтобы уменьшить потери компании в будущем и окупится ли такое улучшение вообще». Если приведете какой-то конкретный пример с расчетом, то могу более детально что-то посоветовать, пока только общими фразами, чтобы вы поняли, что точность важна в теории, на практике вовсе не всегда следует стремиться к точности.
Недавно был на конференции и прогнозисты из Англии рассматривали кейс, что увеличение точности прогноза на 1% приводит к сокращению расходов на электроэнергию на 10 млн.фунтов. Если это ваш случай, то однозначно результат очень плохой. Если деньги смешные, то вожможно не стоит расстраиваться.
Напишите поподробнее и я на блоге рассмотрю ваш кейс, вопрос очень интересный, спасибо!

Почему вопрос мне понравился, несмотря на то, что на первый взгляд он довольно простой. Просто в этмо простом вопросе присутствуют сразу 2 вопроса:

1. Какой метод выбрать при прогнозировании нового товара. И тут пожалуй все прогнозируют по разному, но большинство выбирает именно тренд продаж похожего товара, учитывая различные емкостные ограничения рынка, производственные мощности, логистику и т.д. 

2. А какая погрешность вообще допустима на практике.

В ответе на письмо читателя я уже приводил пример, что бывают ситуации, когда 1% = 10 млн. фунтов. Если смотреть на всю выручку компании, где я работаю, то 1% это ужасный показатель — 85 млн. долл. В то же время, если взять отдельный новый продукт это может быть совсем смешная сумма — 200-300 тыс.руб. Если я ошибусь даже на 20%, то на точность прогноза общей выручки — это практически не повлияет. Это что касается прогноза выручки. Т.е. здесь рекомендация привести погрешность к сумме и сопоставить, например, с общей выручкой по группе услуг. Если точность прогноза отдельно взятого товара низка, то лучше все же рассматривать группу товаров, в этом случае снижается вариация показателей, соответственно проще выбрать метод для улучшения качества прогноза. Здесь все довольно просто.

Но когда мы говорим о том, что все же придется нам делать прогноз именно по одному товару, который может иметь непростую сезонность, на который может влиять любая рекламная кампания и который к тому же, прежде чем будет продан, должен быть приобретен или произведен, и тут мы уже говорим о затратах компании. В этом случае критичность ошибки очень сильно возрастает. А ведь он может быть приобретен/произведен еще в кредит. Тогда я бы рекомендовал все же наложить ресурсные/денежные ограничения более жестко. Т.е. производим/приобретаем пробную партию товара, смотрим на сколько хорошо она продается и только после этого решаем, имея статистику реализацию (скорость, частоту покупок, возможно эластичность), продолжать работать с этим товаром или нет. Ну и обладая статистикой хоть какой-то, проще принять решение о выборе метода. 

В теории прогнозист работает только с цифрами и мало задумывается о том, что такое хорошо и что такое плохо при прогнозировании. Здесь есть простые способы определения качества прогноза, например, коэффициент детерминации, который показывает как хорошо логистическая линия описывает тренд продаж, критерий Дарбина-Уотсона, который показывает независимость остатков, ну или проще говоря говорит об устойчивости прогноза на протяжении времени. Наконец есть ex-post, который позволяет потестировать выбранный способ, который также может быть легко применен на практике.

Когда мы начинаем прогнозировать на практике, все же главное, это эффективность, а не точность прогноза. Если вы понимаете, что увеличивая точность прогноза, вы увеличиваете эффективность, тогда  стоит инвестировать деньги в развитие инструментария, либо повышение квалификации специалистов. А если это просто ваши внутренние амбиции и это не стоит потраченных усилий, то в этом случае вы сами решаете, что есть хорошо, а что плохо.

Еще бы хотел добавить, что приемлемость точности прогноза еще может зависить от отрасли, в которой вы работаете, так как структура себестоимости у всех разная. И если у кого-то после прочтения остался вопрос, так стоит ли все-таки улучшать точность прогноза или нет, то присылайте мне более конкретное описание кейса на cases@fsecrets.ru, и я вам помогу.

Удачи Вам, следите за обновлением в блоге.

Что Data mining может, а чего нет?

0

Недавно натолкнулся на очень интересное интервью с Питером Фэйдером (Peter Fader) с редактором журнала CIO Insight Алланом Алтером (Allan Alter), мастером по количественным ислледованиям в маркетинге бизнес-школы Wharton, который обращается к IT-директорам компаний: «хватит накапливать множество абонентских данных и не правильно применять алгоритмы Data mining-а».

Несмотря на то, что интервью бралось еще в далеком 2007 году, мне оно кажется очень актуальным, тем более после появления новых трендов, таких как Big Data. Я уже ни раз говорил о том, что не всегда продвинутый инструментарий позволяет получить гораздо лучшие результаты при аналитической обработке данных, чем при построении простейших моделей в том же Excel. После прочтения этого интервью я еще больше укрепился в этом мнении.

Статья на столько понравилась, что решил сделать перевод для читателей блога.

CIO INSIGHT: Питер, расскажите о сильных и слабых сторонах использования инструментария Data Mining и Business Intelligence.

FADER: 

Инструментарий Data mining очень хорош для решения классификационных задач, например, для понимания чем одна группа клиентов отличается от другой. Почему у одних людей высокий кредитный риск, а других низкий. Что заставляет людей принимать сторону республиканцев, а другую демократов. Когда мы решаем подобные задачи, я думаю, что лучшего инструмента чем Data Mining не найти и применение инструментария в таких случаях действительно. Другой важный вопрос, про который не стоит забывать, не то попали или нет они в определенную группу, а когда произойдут, какие-то интересующие нас события в будущем. Как долго клиент будет потенциальным, пока не станет действующим? Когда произойдет следующая покупка клиента? Мы очень часто задаемся временными вопросами, и я думаю, что в таких задачах инструментарий Data mining является достаточно слабым. Data mining хорош при ответе на вопрос — произойдет или нет, но очень слаб при ответе на вопрос — когда это случится.

Data mining может быть хорош в задачах, которые чувствительны к сезону, таких как например, похож ли этот ритейлер на такого, который вероятно мог бы заказать определенный товар в течение Рождества. Но в задачах, когда Вы хотите спрогнозировать какие конкретно клиенты приобретут, а не просто какой бренд они могут выбрать следующим, лучше применять другой инструментарий. Существует огромное множество случайных событий в жизни каждого человека, что все их в любом случае не опишешь, например, 600-ми объясняющими переменными, как это делается в Data mining-е.

Люди продолжают думать, если накапливать больше информации, которая описывает поведение клиентов, можно будет разрешить все неопределенности. Такого никогда не будет. Причины, по которым абоненты переходят от одного оператора к другому очень случайны. Это случается порой по причинам, которые уж точно не могут быть взяты из хранилищ информации. Например, из-за споров с женой, или ребенок вывихнул лодыжку и надо что-то делать, или он увидел что-то по телевизору.  Чем пытаться наращивать мощности хранилища, лучше отказаться от этой изматывающей затеи.

CIO INSIGHT:

Как Вы думаете, люди понимают ограничения Data mining?

FADER:

Думаю, что не понимают. И тут ничего не поделаешь с инструментарием или с маркетингом, но можно что-то изменить в человеческой натуре. Такие же вопросы возникают в каждой области науки. Когда технологии сбора данных становятся более продвинутыми и возможностей для построения моделей больше, люди думают, что они смогут ответить на вопросы, на которые раньше не могли ответить. Но если мы говорим о причинах заболеваний или механических поломках,  мы можем еще больше объяснить, накапливая данные.

CIO INSIGHT:

А люди, которые используют пакеты Data mining достаточно ли знают, как их применять.

FADER:

Я бы не стал обобщать, но есть действительно люди, которые пытаются искать иголку в стогу сена. Они думают, что могут ответить на любой вопрос используя один и тот же набор процедур, и это большое заблуждение. Когда Вы получаете другой набор данных, Вам нужно использовать различные алгоритмы. Но что действительно сводит меня с ума, когда люди неправильно используют некоторые алгоритмы статистического анализа, которые ассоциируются с Data mining-ом. Лифт-кривая показывает нам насколько построенная модель корректно описывает склонность людей к какому поведению по отношению к их фактическому. Это средство хорошо использовать в задачах классификации, но не задачах, требующих определить время. Для задач с вопросами «Когда», нужно применять и алгоритмы, которые будут отвечать на вопросы «Когда» . Люди просто не пытаются понять, а правильно ли работают их модели.

CIO INSIGHT:

Что Вы имеете ввиду, когда говорите про склонность в противовес их поведению?

FADER:

Разница в том, что тенденция что-то делать не говорит о том, что люди это будут делать в будущем. Вы можете быть одним из тех, кто покупает одну единицу товара в месяц с Amazon-а. Означает ли, что в течение следующих 10 лет, или 120 месяцев, Вы купите 120 товаров. Вовсе, нет. Вы можете 2 года ничего не покупать или наоборот в следующем месяце купить 5 товаров. Количество всевозможных ситуаций просто огромно. Вот откуда вся это случайность возникает.

CIO INSIGHT:

Вредят ли себе компании неправильно применяя алгоритмы Data mining-а?

FADER:

Хотелось бы начать с положительного примера. Я восхищаюсь тем, как работают специалисты страховых кампаний со своими клиентами. Они не смотрят на все Ваши параметры и не говорят когда Вы умрете. Они изучают похожего на Вас клиента и делают вероятностный вывод о том, когда умрет человек, с характеристиками, похожими на Ваши. Или какой процент людей, с похожими характеристиками доживает до 70 лет. Они просто понимают, что невозможно рассчитать это по каждому страхователю.

Давайте теперь перенесемся в мир маркетинга. Множество фирм говорит о персонифицированном (one-to-one) маркетинге. Вот это действительно плохо для большинства отраслей. Персонифицированный маркетинг работает, когда у Вас есть действительно глубокие отношения с клиентом. Он хорошо работает например в частном управлении капиталом или в B2B, когда Вы встречаетесь с клиентом хотя бы один раз в месяц и понимаете не только их потребности, но также что происходит в их бизнесе. Но в масс-маркетинге, когда Вы не можете отличить каждого отдельно клиента, Вы просто имеете множество людей с их множеством характеристик, которые их описывают. Само понятие персонифицированного маркетинга ужасно. Оно наносит больше время чем приносит пользы, потому что клиенты ведут себя более хаотично чем Вы себе представляете, и затраты, которые Вы тратите на то, чтобы понять как поведет себя конкретный клиент намного перевешивают выгоду, которую Вы можете получить от такого уровня детализации.

Очень сложно сказать, кто их клиентов собирается купить этот товар и когда. Намного проще сгруппировать клиентов по определенным признакам и сделать предположение о них как о группе, чем пытаться делать предположение относительно каждого клиента, какой товар они приобретут с большей вероятностью. А когда мы говорим о том, какие товары покупаются вместе, задача еще больше усложняется.

Я не хотел бы обижать систему рекомендаций Amazon, которую они продвигают. Но может клиент и так собирался приобретать книгу B, тогда все рекомендации оказались для него неподходящими. Или может клиент собирался приобрести книгу C, которая продается с большей маржой для компании, а в результате рекомендации купил книгу B. Или может клиент и вовсе может разочароваться тем, что ему рекомендуют, что и вовсе откажется от покупок. Я ни в коем случае не говорю, что не нужно заниматься кросс-продажами. Я просто говорю, что прибыли от этих операций может быть много меньше, чем думают люди. Очень часто я не могу найти оправданий для таких инвестиций в инструментарий.

CIO INSIGHT:

В свое время Вы выступали за использование вероятностных моделей в качестве альтернативы моделям Data mining. Что Вы понимаете под вероятностными моделями.

FADER:

Вероятностные модели — это класс моделей, которые использовались раньше, когда данные не были столь доступны. Эти модели основываются на нескольких постулатах: люди ведут себя случайным образом; случайность может характеризоваться простыми распределениями; склонность людей что-то делать со временем меняется, для разных людей и при разных обстоятельствах. Наиболее известная наверное, модель выживаемости, которая пришла к нам из страхования. Также она используется в производстве. Вы включили множество лампочек в тестовой лаборатории и смотрите, на сколько долго они горят. Во множестве случаев, это именно то, что я предлагаю делать с клиентами. Мы не собираемся делать предположений относительно любой из светящих лампочек, точно также как мы не должны делать предположения о каждом клиенте в отдельности. Мы сделаем заявление в совокупности, сколько из этих лампочек будут светить в течение 1000 часов. Видно как теория из производства, очень хорошо ложится на страхование. Многие конечно ополчатся на идею, но думаю, что такое сравнение гораздо лучше, чем вся эта персонификация и кастомизация, которую мы видим.

Клиенты настолько же отличны друг от друга, как и лампочки, но по причинам, которые мы не можем выявить, и чтобы их понять нужно потратить множество времени.

CIO INSIGHT:

Какие задачи можно решить с помощью вероятностных моделей?

FADER:

Вероятностные модели решают 3 типа задач: одна из них — время — сколько времени пройдет, прежде чем что-то произойдет; вторая — количественная — сколько полетов, сколько покупок или чего бы то не было произойдет на данном промежутке времени; третья — задача выбора чего-либо — сколько людей выберут это. Большинство современных бизнес-задач как раз и являются комбинацией данных типов. Например, если Вы моделируете время, потраченное на серфинг в Интернете в течение месяца, это количественный метод для моделирования количества визитов и временной метод для длительности каждого из них. Мое мнение что, в Excele достаточно просто построить модели всех трех типов. Большинство людей занимается построением этих моделей на протяжении многих лет и очень тщательно их тестируют. Некоторые начинают противопоставлять алгоритмы Data mining-а  для решения подобных задач. И находят, что возможности вероятностных методов не только удивительны, но и превосходят методы Data-mining-а. Когда Вы подумаете о различных ситуациях комбинирования времени, количественных показателях и выборе, Вы можете описать множество интересных бизнес-кейсов.

CIO INSIGHT:

А как использовать данные методы для определения наиболее прибыльных клиентов или вычислять ценность клиентов на протяжении жизненного цикла?

FADER:

Это как раз тот случай, когда вероятностные модели хорошо работают с моделями глубинного анализа данных. Вероятностные модели мы можем использовать для определения промежутка времени, в течение которого они будут оставаться нашими клиентами или сколько покупок они сделают в течение следующего года. Использовать основные вероятностные модели для определения основного поведения клиентов и потом уже с помощью моделей Data mining понимать, чем группы клиентов с разными поведенческими характеристиками отличаются друг от друга. Понимаете, само по себе поведение не полностью описывает склонность к чему-либо, которые пытаются определить менеджеры. И для этого мы строим вероятностные модели, которые позволяют нам понять склонности клиентов, и потом мы берем эти склонности — тенденции клиентов что-нибудь быстро или медленно, находится долгое время online или нет, и передаем их в инструментарий Data mining объяснить такое поведение 600-ми переменных. И в этом смысле Вы более качественно можете подойти к профилированию новых клиентов или понимать наиболее вероятные действия существующих клиентов. Когда речь идет о принятии результатов и объяснении вероятностных моделей, процедуры Data mining самое лучшее средство.

CIO INSIGHT:

Могут ли вероятностные модели решать временные задачи или задачи предиктивной аналитики.  

FADER:

Очень-очень хорошо. На самом деле, самым моим любимым примером является задача удержания и возврата клиентов. Вы можете их решать вовсе не имея никаких объясняющих переменных. Ирония состоит в том, что при добавлении в модель объясняющих переменных, качество модели ухудшается. Это сводит многих менеджеров с ума. Им нужно знать чем отличаются эти абоненты. И если Вы попытаетесь добавлять объясняющие переменные для объяснения разницы, Вы просто добавляете шум (размываете данные) в систему. Ваша способность сделать более точный прогноз для каждой группы может становиться только хуже.

CIO INSIGHT:

Т.е. Data mining лишь позволяет увидеть есть ли какая-нибудь склонность и все?

FADER:

Совершенно верно. Разгадка заключается в объяснении тенденции склонности к каким-либо вещам, а не объяснению поведению клиентов.

CIO INSIGHT:

Вы говорили, что вероятностные модели могут быть построены просто в Excel-е. Т.е. для того, чтобы их построить вовсе не нужно иметь степень PhD?

FADER:

Конечно, степень не повредит. Но да, Вы правы, эти модели более прозрачны для менеджеров и объясняют они более простые вещи, требований к данным намного меньше, и разработка и внедрение намного проще. Прежде всего я начинаю с вовлечения людей в использование самых простейших моделей. Покажите мне сколько клиентов у нас было в первый год, во второй, третий, четвертый, пятый, и я скажу сколько у нас будет в девятый и десятый прежде чем мы перейдем к объяснению каких-либо переменных, что так любят делать специалисты Data mining. Тут я конечно, не совсем согласен с автором, за 5 периодов предсказать еще 5 на некоторых рынках нереально, но в то же время такой подход имеет право на существование, т.е. не нужно 600 переменных, чтобы сделать простейший прогноз.

CIO INSIGHT:

А если компании и дальше продолжают использовать эти модели, какие данные им стоит продолжать накапливать, а какие стоит прекратить?

FADER: 

В конечном итоге важно поведение. Не должно быть обратных действий, но в основном сейчас собираются данные, которые не характеризуют поведение клиентов. Демографические, психографические, социоэкономические данные, да даже данные по предпочтениям не должны занимать всю емкость хранилищ, если они не делают качество поведенческих моделей лучше. У меня есть огромное множество примеров данных, которые дают неверные представления о ситуации.

Так что поведение это главное, но даже в этом случае всегда можно упростить сбор данных. Например, во многих случаях нам даже не нужно знать, когда произошла та или иная транзакция в прошлом, чтобы сделать прогноз. Просто дайте мне суммарную статистику такую, как частота. Просто скажите мне когда произошла покупка и сколько покупок было сделано в течение последнего года и это практически объяснит все, что можно объяснить. Вы как-то упомянули, что исследование CIO Insight выявило, что объем накапливаемых данных ежегодно увеличивается на 50%. Я бы сказал, что наибольшее из того, что накапливается, бесполезно. С одной стороны иметь на 50% данных больше, это хорошо, но это вовсе не значит, что Вы получите на 50% больше знаний о клиенте. Фактически, Вы даже наносите больший вред, чем приносите пользы, так как Вы вытесняете часть переменных, которые действительно могли бы иметь значение.

CIO INSIGHT:

Какие компании наиболее правильно применяют такие модели?

FADER:

Я может быть и мог бы выделить какие-то компании, но я нигде не видел, чтобы методы применялись именно таким образом, как я люблю. И я скажу почему — это полностью моя вина. Это вина системы образования, которая практически не учит их применять. Большинство фирм просто не обладают этим инструментарием.

CIO INSIGHT:

Что должны делать ИТ-директора компаний, чтобы помочь своим компаниям правильно применять аналитический инструментарий и средства моделирования.

FADER: 

Прежде всего, запомните, много не значит лучше. ИТ-директора часто не задумываются об аналитических задачах и о данных, которые нужно накапливать, но если кто-то дает им весь дополнительный набор данных и атрибутов, они их берут. И неправильно делают, что берут. Дополнительные данные могут Вам навредить, зашумляя действительно важные данные, которые характеризуют склонность к чему-либо. Но очень часто Вам достаточно самых простых мер, таких как частота и давность покупки, чтобы объяснить поведение клиентов. Лучше инвестиции направить на сбор именно этой информации с большей точностью и на регулярной основе. Во-вторых, помните, что более простые модели могут дать Вам много больше, если Вы пока не думаете о том, что может повлиять на поведение. Не думайте о влиянии: сначала, определите поведение. Начните просто в Excel. Вы будете удивлены тому, сколько можно сделать выводов, не покидая одной таблицы.

Оригинал публикации можно прочесть по ссылке.

Я разделяю идеи Питера, на счет анализа данных и накопления данных в хранилищах. О чем я неоднократно говорил на страницах блога. С некоторыми тезисами бы поспорил, но в целом он конечно прав.

Удачи Вам, следите за обновлениями!

Оптимизация работ по прогнозированию

0

Сегодня я хотел бы поговорить об усилиях и времени, которые мы тратим на прогнозирование и о том, как можно оптимизировать эту работу, фокусируясь на главном.

Интересный алгорит предложил Даррин Оливер (Darrin Oliver). Он предложил ввести интегральную оценку качества работы FVA (forecact value added), которая рассчитывается делением самой точности прогноза по отношению к факту, на статистическую точность прогноза, получаемую при использовании статистического алгоритма или применения мат. методов.

С точки зрения практического применения инструмент довольно интересен тем, что он позволяет сосредоточить работу над созданием прогноза по SKU действительно на прогнозировании важных продуктов.

 Как это работает, напротив каждого SKU рассчитываем показатель FVA.

Для примера, если итоговый показатель равен 90%, в то время как статистический всего 80%. Значит Вы проделали хорошую работу, и время затраченное на подготовку прогноза действительно прошло не даром, FVA>1. Если FVA меньше или равен единицы, забудьте о том, чтобы делать прогноз вручную по таким SKU, компьютерный алгоритм сделает это за Вас быстрее и точнее.

Кроме этого Оливер предложил также алгоритм работы с SKU, FVA по которым больше 1. Он предложил отсортировать по убыванию FVA все Ваши SKU. Затем применить ABC анализ. Тратить 60% времени на 10% топовых SKU, 30% времени на 30% вторых SKU и 10% времени на остальные 60% SKU.

Такой подход распределения времени поможет оптимизировать Вашу работу и сосредоточится действительно на основных продуктах.

На мой взгляд, инструмент с практической точки зрения довольно интересен.

Удачи Вам! 


Бесплатный шаблон по прогнозированию

3

Бесплатная надстройка для Excel от коллеги из Индии.

Удачи в применении!

Вверх
Яндекс.Метрика