Data Mining

PSPP – бесплатная замена SPSS Statistics

0

Обнаружил интересный проект, по мнению авторов которого, они считают свое решение полноценной заменой SPSS Statistics, информацию можно найти по адресу https://www.gnu.org/software/pspp/. Там же можно найти и скачать дистрибутив и документацию.

Как пишут авторы есть всего несколько отличий: ваши лицензии никогда не закончатся, нет никаких ограничений по количеству строк и столбцов, система поддерживает больше миллиона значений и переменных, вся функциональность содержится в базовом пакете, не нужно искать никаких расширений, как это сделано в SPSS. Все эти ограничения конечно же положительные.

Небольшое добавление: если у вас windows придется немного повозится чтобы поставить cygwin.

Ну что же, нужно протестировать и составить свое впечатление. Мое убеждение о том, что инструмент сейчас обесценивается, только растет. В тренде именно отраслевые бизнес-решения.

Удачи вам и не спешите платить за инструмент, пусть даже вам его продает команда лучших маркетологов!

Data sharing и его преимущества для бизнеса

0

Data sharing еще один тренд – дословно «обмен данными»  - этой такой подход в научном сообществе, который позволяет делиться своими данными с другими исследователями.

А что если бы можно было использовать данные, доступные в одном бизнесе в другом и наоборот. Какой нескончаемый потенциал этих данных, насколько знания о клиентах можно было бы повысить и сделать таргетированные предложения более точечными.

Я считаю, что этот тренд уже реализуется многими успешными корпорациями, например, телекомы идут в банковскую сферу, розница двигается в сторону банковских переводов, почта двигается в сторону e-commerce и логистики. Есть масса других примеров.

На мой взгляд такие знания о клиентах дают большие преимущества, здесь как раз 1+1 = 3 реализуется в полной мере.

Но есть и негативные моменты.

Много говорится о приватности пользователей, хотят ли клиенты, чтобы о них столько знали? К сожалению правда такова, что используя приложения, используя соц. сети и сервисы геолокации мы уже позволяем знать о себе Далее >

Экономим на моделировании с KNIME

0

Сегодня хотел бы познакомить читателей с одним из инструментов для Data mining.

Все уже наверное, кто так или иначе знаком с Data mining слышали про R, возможно, что многие уже успели даже поработать. Несмотря на богатое многообразие поддерживаемых методов, все-таки среда разработки достаточно специфическая, особенно для людей, далеких от программирования.

Речь пойдет про KNIME (http://www.knime.com) – это open sourse платформа для data driven инноваций (в том числе и методами data mining), которая в отличие от R, обладая достаточно богатым функционалом, имеет еще графический интерфейс.

Я бы сказал, что интерфейс этот ничем не уступает тому же SPSS.

И самое главное преимущество, это все полностью бесплатно. Конечно, если вы хотите поддержку, серверное решение, то придется немного заплатить, но все равно это деньги не соизмеримо меньшие, чем аналогичное решение у других вендоров.

Дистрибутив можно скачать с официального сайта. Там же есть раздел с демо-примерами, видеолекциями. Достаточно просто устанавливается. Честно скажу, глубоко не Далее >

Почему не работает предиктивная аналитика?

0

Построили модель? Модель показывает хорошее качество на цифрах, почему же результаты тестовых кампаний не впечатляют или выигрыш по сравнению с обычными методами оказывается нулевым?

Во-первых, вы должны понимать цель проводимых мероприятий и ее нужно формулировать достаточно четко, не размыто, вида «снизить отток», а вполне конкретно, «уменьшение показателей оттока в целевой группе с 500 до 450 через 2 месяца после начала мероприятий».

Во-вторых, нужно понимать, какие каналы коммуникации вы используете и какова их эффективность. Также важно понимать, сможете вы влиять на эффективность канала или нет.

В-третьих, если в процесс вовлечен персонал, достаточно ли он мотивирован для того, чтобы использовать новый инструмент. Одно дело если вы  пытаетесь модель встроить в достаточно отлаженный бизнес-процесс и все четко понимают, что является результатом на каждом шаге и как потом результаты отражаются на благосостоянии персонала. Другое дело, если вы запускаете какой-либо сложный процесс, которому еще предстоит научиться, тут придется достаточно хорошо поработать над выстраиванием процесса Далее >

Teradata Forum 2013 (Терадата форум)

0

Лучше поздно, чем никогда, вновь удалось побывать на самом интересном на мой взгляд форуме в России от компании Teradata. Компания не только не опустила планку, но даже на мой взгляд ее немного подняла. Приглашенные спикеры как всегда добавили интереса. И наконец кейсы Big Data начались наполняться каким-то смыслом.

Мне больше всего понравилось выступления представителя компании LinkedIn, который рассказал как они на основе анкет создают сервисы как для самих пользователей, так и для B2B-клиентов. На мой взгляд это универсальный алгоритм монетизации BigData. Вероятно, они шли от обратного, т.е. сначала накапливали множество анкет, а потом уже делали интересные сервисы и каждый такой сервис представлен в соц. сети в виде виджета. Удивительно, как можно много сделать интересных сервисов, используя анкетные данные и связи.

Это кладезь информации для исследователей.

Интересны были также выступления российских телеком. компаний, конечно они достаточно сдержанно в отличие от своих коллег по рынку делятся информацией, но все же было Далее >

Вверх