Big Data

BDaaS – Big Data as a Service

0

Недавно услышал новый термин и сразу резануло ухо. Опять новомодное слово. Скоро все что сдается в аренду будет иметь приставку aaS – As a Service – как сервис. С одной стороны я согласен, что стоимость владения некой инфраструктурой действительно можно оптимизировать, если взять эту инфраструктуру в аренду. С другой стороны, зачем брать нечто в аренду, что не дает тебе никакого бизнес-value. Ведь не для всякого бизнеса Big Data вообще может дать какой-то результат. То есть этот результат будет, но выигрыш будет ничтожным по сравнению с тем, что может дать и традиционный инструментарий.

Причем что интересно, количество решений, позволяющих решать задачи класса Big Data растет просто ошеломляющими темпами, но при этом громких успешных кейсов не так-то и много и более того часть этих кейсов можно решать традиционным способом. На мой взгляд есть более перспективная ниша, а именно не просто Big Data as a Service а готовый сервис с Далее >

Data sharing и его преимущества для бизнеса

0

Data sharing еще один тренд – дословно «обмен данными»  - этой такой подход в научном сообществе, который позволяет делиться своими данными с другими исследователями.

А что если бы можно было использовать данные, доступные в одном бизнесе в другом и наоборот. Какой нескончаемый потенциал этих данных, насколько знания о клиентах можно было бы повысить и сделать таргетированные предложения более точечными.

Я считаю, что этот тренд уже реализуется многими успешными корпорациями, например, телекомы идут в банковскую сферу, розница двигается в сторону банковских переводов, почта двигается в сторону e-commerce и логистики. Есть масса других примеров.

На мой взгляд такие знания о клиентах дают большие преимущества, здесь как раз 1+1 = 3 реализуется в полной мере.

Но есть и негативные моменты.

Много говорится о приватности пользователей, хотят ли клиенты, чтобы о них столько знали? К сожалению правда такова, что используя приложения, используя соц. сети и сервисы геолокации мы уже позволяем знать о себе Далее >

Нужно ли компании Data Lake

0

Недавно услышал новый термин, Data Lake (Озеро данных) – речь идет о подходе к хранению больших данных. Не нужно тратить большие деньги на преобразование данных, а нужно хранить их в первоначальном виде. Вероятно, тогда хранить эти данные дешевле. Главное, чтобы к ним был простой доступ и возможность их оперативного использования в случае необходимости.

CTO компании Teradata Стивен Бробст сформулировал  5 заповедей «озера данных» (взял в статье на Cnews).

Он приводит 5 простых советов по развертыванию «озер данных», которые позволят компаниям эффективнее использовать накапливаемые данные.

Не засоряйте «озеро данных». При том, что данные могут храниться в «озере» без структуры, все же имеет смысл сразу организовывать пространство для хранения и размещать данные по категориям. Тогда любой пользователь сможет быстрее найти и применить необходимые ему данные. А «озеро» не превратится в «болото».

Обеспечьте безопасность данных в «озере». Защита персональных данных и конфиденциальной информации сразу должна стать первостепенной задачей. Данные из «озера» не должны Далее >

Big Data: Тренды 2015 года

0
  • Объем рынка Big Data достигнет $ 125 млрд и будет продолжать расти

  • Интернет вещей (Internet of things) станет мейнстримом

  • Алгоритмы принятия решений станут более продвинутыми

  • Текстовая аналитика будет использоваться все чаще 

  • Инструменты визуализации данных будет доминировать на рынке

  • Общество все больше будет опасаться за свою приватность

  • Компании будут бороться за талант в области работы с данными

  • Большие данные будут чаще использоваться для открытия тайн Вселенной

Все это сделает нашу жизнь более интересной! Удачи вам и с наступающим новым годом и Рождеством!

 

Экономим на моделировании с KNIME

0

Сегодня хотел бы познакомить читателей с одним из инструментов для Data mining.

Все уже наверное, кто так или иначе знаком с Data mining слышали про R, возможно, что многие уже успели даже поработать. Несмотря на богатое многообразие поддерживаемых методов, все-таки среда разработки достаточно специфическая, особенно для людей, далеких от программирования.

Речь пойдет про KNIME (http://www.knime.com) – это open sourse платформа для data driven инноваций (в том числе и методами data mining), которая в отличие от R, обладая достаточно богатым функционалом, имеет еще графический интерфейс.

Я бы сказал, что интерфейс этот ничем не уступает тому же SPSS.

И самое главное преимущество, это все полностью бесплатно. Конечно, если вы хотите поддержку, серверное решение, то придется немного заплатить, но все равно это деньги не соизмеримо меньшие, чем аналогичное решение у других вендоров.

Дистрибутив можно скачать с официального сайта. Там же есть раздел с демо-примерами, видеолекциями. Достаточно просто устанавливается. Честно скажу, глубоко не Далее >

Вверх