Маркетинговые исследования

Стадии зрелости по работе с данными

0

Сегодня хотел бы поговорить о стадии зрелости по работе с данными любой коммерческой организации. В 2016 году компания EMC опубликовала материал, который был посвящен этому вопросу, я немного перерисовал его и перевел и хочу поделиться с вами этим материалом.

Самая начальная стадия по работе с данными — это накопление и анализ исторических данных. Тут мы больше погружаемся в то, что уже прошло и пытаемся объяснить поведение компании, анализируя события которые происходили в прошлом на основе фактов.

Вторая стадия — это поиск бизнес инсайтов. То есть мы не только анализируем, но и пытаемся понять какие-то закономерности, возможно скрытые факторы, которые не видны в трендах, но могут проявиться даже в будущем, например, если мы видим что какой-то тренд негативных событий нарастает и доля его постоянно увеличивается, несмотря на то, что он никак не проявляется на текущий момент.

Третья стадия — Оптимизация бизнеса — мы находим какие-то оптимальные факторы при которых компания показывает постоянный рост, еще лучше если мы этими факторами можем управлять и увеличивать наше воздействие с целью роста показателей.

Четвертая стадия — мы накопили множество информации и понимаем, что эта информация может быть не только полезна нам внутри, но может быть полезна другим контрагентам, которые на ее основе смогут получать лучшие результаты и готовы платить за эту информацию. Например, телеком операторы достаточно успешно продают информацию банкам о подтверждении анкетных данных по месту проживания, или о том как перемещаются потоки жителей, чтобы планировать инфраструктуру, например эта информация интересна ритейлу, или городским властям для планирования транспортной инфраструктуры. Вообще тема монетизации заслуживает отдельных постов, и может даже не одного. Поделюсь чуть позже этой информацией. А кому не терпится и уже сейчас готовы в это инвестировать, велкам в личку, поможем сформировать стратегию монетизации ваших данных.

Ну и наконец пятая стадия, это стадия трансформация бизнеса. Здесь речь не идет о каком-то конкретном подразделении, здесь речь идет о комплексном подходе, где каждый процесс так или иначе связан с данными, неважно какая это функция внутри организации. Любой процесс формируется таким образом, чтобы он был измеримым, любой продукт при запуске формируется таким образом и интегрируется в процессы, чтобы каждый этап процесса был измеримым и данные по нему могут быть легко получены. В каждом подразделении есть люди, которые работают с данными и улучшают бизнес. Но тут надо учесть один момент, это не про то, что мы запустили продукт, а потом думаем а как же посчитать по нему воронку, даже если это удается сделать, это вообще не об этом, это про то, что вы изначально в свои процессы при валидации продукта разрабатываете стратегию работы с данными и предъявляете требования к нему исходя из необходимости мониторинга, как если бы вы согласовывали с юристами доп. соглашение, ровно про это.

Вы изначально продумываете до мелочей какие данные и для чего будете использовать, а не так, что да ладно давайте накопим, а потом подумаем что с этим сделать, нет, нет и еще раз нет, на этой стадии у вас есть четкая стратегия работы с данными, вы знаете для чего каждый показатель, четко понимаете его методику и понимаете в каком виде он вам нужен, в сыром или агрегированном, а также можете оценить через какое время вам нужно модифицировать инфраструктуру не вдаваясь в пространные рассуждения, ну если нам будет нужно мы расширимся.

Самое интересное мое наблюдение в крупных компаниях, что IT подразделения не знают какие данные в хранилище и для чего они нужны бизнесу. А самое интересное — это то, что в большинстве своем эксплуатирующие подразделения из периода в период, готовят данные на регулярной основе, не один месяц, а то и год, и даже не задаются вопросом, а вообще сколько бизнес-пользователей у этих данных и как часто они используются. Тема оптимизации хранилищ — это мне кажется вообще отдельная тема. В общем самое первое подразделение, которое требует тщательного анализа — это IT.

И если вы хотели бы заглянуть в такое будущее, но не знаете с чего начать, то велкам в ЛС, поможем разработать вам стратегию по работе с данными и поможем как может выглядеть ваш data-driven бизнес.

Удачи вам и будьте успешны!

Кейсы для байеров и селлеров ТВ рекламы

0

Недавно мы тут решали интересный кейс для одного из сейлз хаусов крупного ТВ оператора. Ну прежде всего мы научились парсить сложные логи (ну не то, чтобы не умели, но теперь умеем гораздо больше), измерять различные метрики (охват, аудитория, различные удельные статистики смотрения в разрезе эфирных событий, в различных срезах и т.д.), набирать панельные данные, делать различные коррекции.
Кроме этого, мы научились восстанавливать профиль домохозяйства по смотрению, определять количество зрителей, их состав, количество детей, наличие пенсионеров и домохозяек, половозрастной состав, занятость. В общем все что так или иначе должно позволить более точечно таргетировать аудиторию.
Во время исследования, было сделано немало открытий относительно профиля смотрения различных групп пользователей, что смотрит молодежь, что смотрят люди старшего возраста. Некоторые мифы улетучились, стоило взглянуть на данные и результаты получились очень необычными. Когда анализировали смотрение по времени суток, натолкнулись на очень необычные результаты, скажу я вам, вот не все группы смотрят ТВ в прайм тайм, а реклама самая дорогая. Отсюда есть множество путей оптимизации для байеров. В общем можно прилично минимизировать бюджеты выхватив нужную аудиторию в некоторых телеканалах за дешево, обеспечив более точечный таргетинг. Поэтому если вы покупаете рекламу и бюджеты не резиновые, мы точно сможем вам помочь.

Уверен, что среди моих знакомых есть и те кто развивает ТВ)) И вам тоже сможем помочь зарабатывать больше и тратить меньше. Выделить метрики, которые смогут в лучшем свете представить аудиторию, профили смотрения, интересы, состав домохозяйств и многое другое. Для задач внутреннего upsell-а самый правильный механизм. А может кому-то рекомендательную систему нужно построить по продвижению контента, тоже поможем. А для задачи оптимизации контента такие метрики просто незаменимы, а иногда нужны и просто поторговаться с правообладателем.

А может кому-то просто интересно развивать Data продукты, которые будут помогать как байерам так и селлерам. Даже с минимальным охватом региона и небольшой долей рынка, можно давать достаточно репрезентативные оценки по смотрению и добиваться хорошей качественной оценки аудитории.

Кого натолкнул на мысль, пользуйтесь на здоровье, а кому нужна помощь, велкам в ЛС, поможем обеспечить быстрый старт и дадим импульс к развитию.
PS На картинке профиль смотрения одной из групп, многое непонятно и зашифровано в справочниках)) Но какие-то вещи очень даже понятны и были получены в результате обогащения сложных и непонятных конструкций в логах.

Удачи Вам, будьте более успешны!

Как оптимизировать затраты и бюджет на закупку?

0

Продолжаем темы Data Driven Optimization. Поговорим про оптимизацию затрат и управление поставщиками.
Любая закупка генерирует затраты организации и чем лучше компания управляет этим процессом, тем более она эффективна. А я могу вам сказать, что на рынке эта область очень незрелая и с точки зрения обеспечения аналитики сильно отстает от коммерческой функции и это значительная точка роста для вашего бизнеса.

Аналитических кейсов в этой теме с финансовым эффектом очень много, причем как в коммерческих организациях, так и государственных заказчиках.

Давайте рассмотрим несколько кейсов на каждом из этапов:
1. Формирование и оптимизация бюджета закупки – задача определения оптимального объема закупки на основе расходования материалов, на выходе сбалансированный бюджет закупок на N месяцев вперед.
2. Оценка волатильности цены и подбор оптимального сезона для закупки, некоторые товары имеют сезонный спрос. Определение сезонов с наименьшей ценой позволяет здорово оптимизировать затраты.
3. Проверка поставщиков – на аффилированность (явная, неявная — сговор), на надежность (возможности выполнить условия конкурса/потенциальное банкротство, отсутствие претензий со стороны третьих лиц, одновременное участие в большом объеме закупок).
4. Подбор поставщиков также ваша задача, важно сформировать пул надежных поставщиков по каждой номенклатуре закупаемой продукции. И никакого нарушения, если вы просто помимо открытого конкурса, отправляете уведомления еще и по своему списку, гарантируя себе, что закупка точно состоится и вы не потеряете время впустую.
5. Выявление подозрительных конкурсов – нужно проводить регулярный мониторинг подозрительных конкурсов через интегральную оценку по надежности поставщика, цене, длительности, снижении цены от первоначальной, отклоненным заявкам, подозрению на сговор и пр. Тогда настроенные контроли, позволят вам на ранних этапах выявить риски.
6. Контроль над уровнем цен – тут важно по каждой номенклатуре проводить регулярный анализ цен поставщиков на основе открытой информации на сайте, каталогах, или запрашивать предложения с определенной частотой. В этом случае вы будете точно понимать рынок и возможную цену. И тут детальные номенклатуры очень важны, потому как изменение на 1 букву в индексе может привести к увеличению цен в три раза, и вам отгрузят товар с бантиком, который вам не нужен, но задорого.
7. Контроль над объемом закупаемой продукции – вы не допускать затоваривание склада, информируя если объем закупаемых товаров слишком большой (в погоне за минимальной ценой покупается слишком большая партия товаров), либо наоборот объем закупаемой продукции слишком низок (что приводит к дорогой закупке).
8. Контроль над видами закупаемой продукции – ведите реестр товаров заменителей/наличия их на складах/ближайших складах, это позволяет оптимизировать бюджет закупок. Если покупаете технологические товары и услуги, важно отслеживать тренды, все быстро меняется, появляются новые более дешевые технологии, иногда малоизвестные вендоры поставляют более качественные продукты.
9. Объединение закупок между филиалами либо шэринг закупки на паях – самый изящный способ сэкономить, это купить партию, договорившись с кем-то кому нужна такая же продукция.

Далее когда вы купили, потратили деньги, это не значит что уже нужно расслабиться, начинается самое интересное это управление затратами:
1. Вы можете оптимизировать затраты на хранение
2. Можете пересматривать цену если арендуете какой-то ресурс/помещение/пользуетесь услугами. Рынок не стоит на месте и важно проводить работу по мониторингу рынка регулярно, это вам может дать достаточно большую экономию.

Давайте приведу несколько примеров, когда сложно выявить превышение затрат, но можно. Анализируя расходные договора на аренду и покупку ресурсов, я выявлял такие кейсы:
1. Закуплены коммутаторы с количеством портов много больше рынка конкретного региона, это иногда может быть дом, иногда подъезд, а иногда и целый населенный пункт.
2. Закуплены каналы на 50% превышающий нужный объем со скидкой 20% за единицу. То есть вроде бы дешевле на 1 Мбит, но все равно потратили лишних денег, иногда и просто скидку получили, остались в тех же деньгах, хотя могли бы сэкономить. Эксплуатация очень часто перестраховывается и не отслеживает рынок, рынок может быть падающим, а технари планируют развитие.
3. Критичный анализ утилизации ресурсов — вообще проанализируйте чем забиты ваши каналы, я находил и убыточный трафик и технологический трафик, который можно было пускать по дешевому маршруту, но так исторически сложилось.
4. Посмотрите критично на резервирование — я иногда находил такие маршруты, которые по 3 раза зарезервированы было по разным маршрутам.
5. Просто старые договора на аренду, по которым цены снизились на рынке в 3 раза, вроде сумма небольшая поэтому никто не обращает внимание.
6. Использование самого дорогого маршрута для пропуска — вроде бы и канал забит, но переключение трафика на дешевый маршрут и отказ от дорогого приносит дополнительную экономию.
И на самом деле много что еще.

А вы когда-нибудь анализировали прейскуранты Западных IT вендоров — у некоторых они составлены так, чтобы вы никогда в этом не разобрались, а у некоторых содержат более 1000 страниц. А мы в этом очень хорошо разбираемся и знаем как не переплачивать за то, что вам не нужно.

Поверьте если вы проведете эту работу, а по хорошему ее еще и автоматизировать можно, вы получите очень качественный прирост маржинальности и окупите систему к моменту запуска ее в эксплуатацию.

Если вам интересна эта тематика — тогда вам сюда http://fsecrets.ru/service/

Хотите оставаться в теме самых интересных кейсов применения больших данных, подписывайтесь на telegram-канал https://t.me/fsecrets

Как выбрать правильного интернет провайдера

0

Натолкнулся на интересный сервис по выбору качественного провайдера Интернет http://vinternete.su/, мне кажется пока сервис еще сыроват, но ребята на правильном пути, если они реализуют все что у них написано, то провайдеры не смогут уже возражать против объективных измерений. Пока я так понял доступна только Москва и область. Мне кажется такие социально-значимые вещи нужно обязательно поддерживать и распространять. Поэтому делюсь с вами, давайте поддержим ресурс своими измерениями, чем больше будет база измерений, тем более качественной будет статистика на основе которой клиенты будут принимать решение. На мой взгляд, это классический пример Data-driven сервиса.

Удачи вам и правильного выбора! Поможем составить независимый рейтинг провайдеров на основе реальных измерений скорости!

 

A/B-тестирование 

0

A/B-тестирование (A/B testing, Split testing) — метод маркетингового исследования, суть которого заключается в том, что контрольная группа элементов сравнивается с набором тестовых групп, в которых один или несколько показателей в offer-е были изменены, для того, чтобы выяснить, какие из изменений улучшают целевой показатель, например hit rate, revenue, profit и т.д.

Примеры:

  • Сравнение различных скидок, например, 20% и 50% и определение оптимальной скидки
  • Сравнение двух offer-ов с разной механикой для определения оптимального предложения
  • Иногда проводят более экзотические модификации, например, меняют цвет баннера, размер текста, расположение УТП
Кроме этого должны быть соблюдены ряд условий:
  • Выборка должна быть однородная. Мы должны понимать, что hit rate для разных подсегментов одного сегмента с одним и тем же offer-ом, одинаковый. Иногда говорят, что необходимо провести A/A тестирование, прежде чем приступить к A/B тестированию. Если условие нарушаются, результаты A/B тестирования по выбору оптимального offera непредсказуемы.
  • Offer должен быть применим для сегмента. Например, мы сравниваем скидку 30% и 20% на годовой абонемент и тестируем на абонентах, которые постоянно задерживают оплату, пропускают периоды оплат. Отклик будет столь мизерным, что результаты будут мало применимы, даже если будут отличаться на порядок.
  • Объем выборок при тестировании offer-ов должен быть статистически значимым, в идеале чем больше, тем лучше, в этом случае результаты будут более точными

Удачи вам! Прежде чем запускать сложный offer, неплохо бы его потестировать!

Вверх
Яндекс.Метрика