Инструментарий

Как выбрать правильного интернет провайдера

0

Натолкнулся на интересный сервис по выбору качественного провайдера Интернет http://vinternete.su/, мне кажется пока сервис еще сыроват, но ребята на правильном пути, если они реализуют все что у них написано, то провайдеры не смогут уже возражать против объективных измерений. Пока я так понял доступна только Москва и область. Мне кажется такие социально-значимые вещи нужно обязательно поддерживать и распространять. Поэтому делюсь с вами, давайте поддержим ресурс своими измерениями, чем больше будет база измерений, тем более качественной будет статистика на основе которой клиенты будут принимать решение. На мой взгляд, это классический пример Data-driven сервиса.

Удачи вам и правильного выбора! Поможем составить независимый рейтинг провайдеров на основе реальных измерений скорости!

 

A/B-тестирование 

0

A/B-тестирование (A/B testing, Split testing) — метод маркетингового исследования, суть которого заключается в том, что контрольная группа элементов сравнивается с набором тестовых групп, в которых один или несколько показателей в offer-е были изменены, для того, чтобы выяснить, какие из изменений улучшают целевой показатель, например hit rate, revenue, profit и т.д.

Примеры:

  • Сравнение различных скидок, например, 20% и 50% и определение оптимальной скидки
  • Сравнение двух offer-ов с разной механикой для определения оптимального предложения
  • Иногда проводят более экзотические модификации, например, меняют цвет баннера, размер текста, расположение УТП
Кроме этого должны быть соблюдены ряд условий:
  • Выборка должна быть однородная. Мы должны понимать, что hit rate для разных подсегментов одного сегмента с одним и тем же offer-ом, одинаковый. Иногда говорят, что необходимо провести A/A тестирование, прежде чем приступить к A/B тестированию. Если условие нарушаются, результаты A/B тестирования по выбору оптимального offera непредсказуемы.
  • Offer должен быть применим для сегмента. Например, мы сравниваем скидку 30% и 20% на годовой абонемент и тестируем на абонентах, которые постоянно задерживают оплату, пропускают периоды оплат. Отклик будет столь мизерным, что результаты будут мало применимы, даже если будут отличаться на порядок.
  • Объем выборок при тестировании offer-ов должен быть статистически значимым, в идеале чем больше, тем лучше, в этом случае результаты будут более точными

Удачи вам! Прежде чем запускать сложный offer, неплохо бы его потестировать!

PSPP — бесплатная замена SPSS Statistics

1

Обнаружил интересный проект, по мнению авторов которого, они считают свое решение полноценной заменой SPSS Statistics, информацию можно найти по адресу https://www.gnu.org/software/pspp/. Там же можно найти и скачать дистрибутив и документацию.

Как пишут авторы есть всего несколько отличий: ваши лицензии никогда не закончатся, нет никаких ограничений по количеству строк и столбцов, система поддерживает больше миллиона значений и переменных, вся функциональность содержится в базовом пакете, не нужно искать никаких расширений, как это сделано в SPSS. Все эти ограничения конечно же положительные.

Небольшое добавление: если у вас windows придется немного повозится чтобы поставить cygwin.

Ну что же, нужно протестировать и составить свое впечатление. Мое убеждение о том, что инструмент сейчас обесценивается, только растет. В тренде именно отраслевые бизнес-решения.

Удачи вам и не спешите платить за инструмент, пусть даже вам его продает команда лучших маркетологов!

Извлекаем выгоду из рациональности

0

Хотелось бы порассуждать на тему, а сколько реально можно сэкономить/заработать, если полностью абстрагироваться от эмоционального поведения и довериться рациональному, основанному не на чувствах, а на конкретных фактах (читать цифрах). Конечно, цифры при этом должны быть полностью интерпретированы и укладываться в общее понимание мира.

Возьмем для примера задачу оптимизации тарифной политики. Я буду рассматривать на примере телекома, но в принципе ничего не мешает, такие же рассуждения применить к другим отраслям. Возьмем, например, провайдера проводного доступа в Интернет. У него есть линейка тарифов, понятно, что она со временем меняется, какие-то абоненты сидят на архивных тарифных планах, т.е. они менее рациональны и скорее всего переплачивают, какие-то абоненты, возможно, сидят на акционных предложениях, в этом случае может быть как ситуация с переплатой так и с экономией.
Если проанализировать распределение абонентов по ARPU, скорее всего, график распределения будет близок к нормальному, возможно с некоторым сдвигом в стороны минимальной границы тарифных планов, с локальными максимами в тарифах. При этом, он скорее всего будет функцией непрерывной, так как есть абоненты, которые уходят в блокировку, есть абоненты, которые подключились в середине периода, соответственно ARPU таких абонентов будет представлять из себя вид растущей линейной функцией с максимумом в виде тарифа (возможно, он будет увеличен еще на максимум из суммы тарифов доп. услуг). Если тарифные планы с оплатой по трафику, скорее линейная непрерывная функция.
Как правило, для увеличения эффективности работы с абонентской базы, менеджеры разрабатывают стимулирующие мероприятия для перехода клиентов в сегмент с большим ARPU. «Растят» абонентов. Это может быть как за счет увеличения скорости (но с некоторой скорости спрос становится неэлластичным, т.е. не имеет смысл абоненту переходить на тарифный план с большей скоростью и, как следствие более дорогим), так и за счет некоторого включенного в пакет набора дополнительных услуг (тут тоже есть предел, так как доп. услуги могут быть с высокой себестоимостью, либо попросту неинтересны абоненту). Понятно, что в какой-то момент времени и эти мероприятия попросту перестают работать или становятся менее эффективны (в момент когда эффект ниже чем затраты на коммуникацию, в этом случае нет смысла продолжать).
Если отбросить абонентов, которые уходили в расчетном периоде в блокировку, подключались в расчетном периоде, то скорее всего график из себя будет представлять точки в виде тарифов. Ну или если сделать веса в виде количества абонентов, то скорее всего это будет похоже на бусины, которые переходят от большего к меньшей до какого-то момента, с увеличение на конце с последующим убыванием. Это связано с неким премиум-сегментом, который иногда доходит и до 10%, который не считает денег, а привык брать самое дорогое.
Если анализировать поведение всех абонентов, то они, как правило, в среднем иррациональны, и переплачивают за свою иррациональность по моим наблюдениям процентов 20%. Задача любого аналитика сделать такую иррациональность максимальной.
И тут есть несколько инструментов:
1. Предложить больше услуг за чуть большие деньги. Но при этом себестоимость должна увеличиться меньше чем сумма, на которую увеличивается чек.
2. Предложить существенное увеличение скорости за чуть меньшие деньги, принцип с себестоимостью тот же.
3. Индексировать архивные тарифные планы. Не люблю такие приемчики, но они работают. Это позволяет расшевелить иррациональных абонентов и «уложить» их в правильные тарифы. Но тут с точки зрения удержания все должно работать как часы. В противном случае можно и навредить. Большинство абонентов вряд ли будут дергаться из-за переплаты 50 рублей.
4. При авансовой системе следить за своевременным пополнением счета и напоминать заранее абоненту пополнить его. Ведь каждый день простоя это минус в ARPU. При кредитной аналогично. Тут тоже есть инструменты в виде обещанного платежа, доверительного кредита и т.д. Все что заставляет абонента пользоваться дальше услугой без перерыва. Интересно, но факт, что разница в ARPU между авансовой системой расчета и кредитной составляет более 10% в пользу последней, самую большую разницу, которую я видел, составляла 25%.

Это все работает, проверено опытным путем. Но есть и более сложные механизмы, которые тяжело поддерживают, но которые позволяют выжать максимум. Каждый абонент имеет свою границу комфорта затрат на конкретный товар или услугу и конкретную границу неэластичной переплаты. Чем лучше вы понимаете абонента и знаете его границу комфорта тем эффективнее вы можете работать с таким абонентом. Есть компания Pontis, которая декларирует принцип Segment of one (об индивидуальной работе с каждым абонентом), они в основном специализируются на Top Up кампаниях для абонентов мобильной связи, идея которых заключается в стимулировании пополнения счета, и, за счет направленных предложениях, которые позволяют как можно быстрее этот счет уменьшить.
Такой принцип можно транслировать и на ценообразование. Мне пока сложно представить себе индивидуальный тариф для многомиллионной абонентской базы, но в теории это возможно, это сложно поддерживать, актуализировать, но возможно, при наличии определенных принципов, заложенных в модель, в этом случае вы еще больше можете «выжать» из абонентской базы. Однако, если вспомнить, даже школьную математику, то можно выжать некоторый эффект с помощью небольших усилий. Не обязательно делать индивидуальный тариф для каждого абонента. Добавление тарифов посередине интервалов, уже дает вам 50% от максимально возможного эффекта, следующая итерация деления пополам еще 25%. Т.е. если вы между границ тарифов уложите еще по 3 тарифа, вы можете выжать 75% из максимально возможного эффекта. Понятно, что какое-то время уйдет на стимулирование перехода, но это можно сделать.
В случае других товаров, это может быть такой же товар в другой упаковке за чуть большие деньги. Кто экономит, возьмет подешевле, кто нет, возьмет подороже. В рознице есть еще трюки, связанные с доступностью, перед глазами располагают самый дорогой товар, а на нижние полки, куда неудобно наклоняться, товар подешевле.

Также можно поступать и с оптимизаций затрат. Как правило, очень сложно представить себе ситуацию, при которой за период количество закупаемой продукции = количеству продаваемой. При аренде магистрального Интернет, это сделать еще сложнее, но также возможно. Важно знать, сколько вы продаете за период, какую полосу потребляют ваши абоненты и минимизировать эти запасы (читать переплаты).
В свое время, я решал подобные задачки на заре развития, удавалось экономить и зарабатывать на таких моделях достаточно много денег.
Я вам как-то рассказывал о задачке в электроэнергетике, оптовая закупка и продажа конечному потребителю, в телекоме и рознице похожий принцип. В случае значительного роста потребления, когда идет большое непрерывное расширение ресурса/закупки продукции (читать затрат), экономия при решении такой задачи может достигать огромных масштабов. Максимальная экономия может составлять до 50% дополнительных затрат за период. В среднем, с небольшим изменением бизнес-процессов, можно достаточно просто достигать 25-37%.

Удачи вам, будьте рациональны, это может значительно увеличить вашу эффективность.

Монетизация данных

0

Давно хотел поговорить о таком понятии, как монетизация данных или Data monetization. Объем данных в компаниях как правило увеличиваются, стоимость систем хранения данных за 1Гб снижается, но затраты на накопление данных растут. И если данные не использовать в коммерческих целях (т.е. не пытаться их использовать, чтобы на них заработать), то по сути это деньги на ветер.

Кроме этого появляются программно-аппаратные комплексы, которые могут обрабатывать не только структурированные внутренние данные, но и внешние неструктурированные данные сети Интернет, например. Стоимость таких комплексов как правило очень велика. Как правило упоминается Big Data.

Но хотел бы подчеркнуть, что использовать BigData и не монетизировать данные, это просто пустая трата трудоресурсов и денег.  Это на самом деле очень большая проблема, в мире до сих пор достаточно мало кейсов, при которых накопление новых объемов данных прямо пропорционально эффективности. Как правило, такие кейсы придумывают вендоры, чтобы продать новые комплексы. И не всегда они легко реализуемы.

В России уже тоже достаточно много компаний, которые такие комплексы имеют, но по прежнему компании встречаются все с теми же проблемами. Как вернуть потраченные деньги во всю эту инфраструктуру.

Я слышал несколько очень потенциально интересных кейсов, которые могут быть решены на этих комплексах. Но могу точно сказать, что окупаемость их гораздо больше 3-5 лет.

Сейчас все идут по принципу, чем больше данных, тем лучше, объемы хранилищ разрастаются до 200-400 терабайт, у некоторых мировых компаний, они составляют 10-ки петабайт.

Потом нанимаются специалисты-аналитики и вокруг данных создается инфраструктура, которая думает, что делать со всем этим массивом и как получить хоть какую-то ценность от этих данных. Иногда, не спорю, это оправдано, но иногда, просто пустая трата времени.

Я бы предложил строить хранилища по другому принципу. Есть заказчик, он доказывает эффективность именно этого набора данных путем использования семплированной небольшой порции данных. Есть эффект, пожалуйста, храним и используем на регулярной основе. Нет эффекта от накопления или нет заказчика, в топку детальную информацию, храним только агрегаты, они занимают меньше времени, и если вдруг однажды необходимость их использования появится, то для тестирования идей иногда достаточно и агрегатов, если не достаточно, смотри пункт 1, маленькая выборка и вперед по циклу.

Это подход конечно может потребовать постоянного перестроения архитектуры. но на мой взгляд он не требует разрастания штата на содержания всего ненужного массива.

В конечном итоге ведет именно к эффективному использованию ресурсов.

Накапливайте данные с умом.

Если кому-то интересны реальные отраслевые кейсы и вы не знаете с чего начать, пишите на cases@fsecrets.ru, помогу чем смогу.

Удачи Вам!

Вверх
Яндекс.Метрика