Любая компания, которая имеет собственный контакт-центр сталкивается с множеством вызовов, которые перед ней стоят. Основная задача — это наличие ресурса для решения всех задач. В часы наибольшей загрузки ресурса всегда не хватает и приходится передавать на аутсорсинг, если контакт центр занимается обслуживанием или привлекать дополнительный ресурс во вне, если контакт центр занимается сбором задолженности или продажами. Внешний контакт центр больше заинтересован работать по минутам, нежели за результат. Если такой контакт центр работает за результат, то это хорошо, если поминутно, то у него нет никакого интереса делать больше за меньшие деньги.

На мой взгляд каждый контакт центр должен задать себе простой вопрос — а на сколько эффективно используется текущий ресурс. Например, посчитать время, проведенное операторами на трубке к общему временному фонду, это первый момент, а второй момент вообще понять, а все ли операторы одинаково эффективны на 1 сделанный звонок. Если в первом случае этот показатель от 60%, а во втором случае все одинаково эффективны, поздравляю, вы из тех, кто действительно работает неплохо, но есть те кто и 95% показывает, это вообще очень круто!

НО! Если эти показатели ниже и есть разрыв между лучшими и худшими операторами, я вас поздравляю у вас есть огромный потенциал для увеличения эффективности. Если в первом случае вам нужно разбираться с непродуктивной потерей времени, то во втором случае нужно понять, что же делают лучшие операторы, чего не делают худшие. Конечно, вы можете их прослушивать, давать какие-то рекомендации, если у вас немного звонков, тогда эти рекомендации сразу дадут ощутимый прирост. Но если звонков миллионы, то традиционной прослушкой не обойтись и нужно использовать более интеллектуальные подходы.

В данном случае речь идет об использовании алгоритмов NLP (Natural Language Processing), которые помогают размечать тексты операторов и далее уже на основе размеченных текстов оптимизировать диалоги худших (выдавая рекомендации) приводя их к лучшим. О том как мы решали такую задачу я расскажу в другой заметке.

А стоит ли овчинка выделки, зачем так заморачиваться, почему нельзя просто послушать и дать рекомендации?

Раньше мы так и делали, но когда в одном из кейсов сравнили результаты ручной разметки речевых скриптов операторов, в результатами автоматической разметки с помощью алгоритмов text mining, получили разную картину и результат автоматической разметки оказался более полным, потому как позволяет проанализировать больше информации и выделить все самые возможные и невозможные ситуации и сформировать более полные рекомендации по изменению операторов.

Что это вообще дает? Основной эффект вы получаете практически сразу же, с тем же ресурсом вы начинаете делать намного больше.

Например, для одного из кол центра проведя такую работу и проведя пилотный проект после разработанных рекомендаций, мы сравнили результаты контрольной и пилотной группы, и получили колоссальные результаты практически сразу же, а именно конверсия из звонков в результативные звонки с подтвержденной оплатой увеличилась на 18%, а сумма платежа увеличилась более чем в 2 раза. Неплохо притом же ресурсе получить такой прирост.

Также глубокий анализ кол-центра позволяет вам увидеть непродуктивную потерю времени операторов и провести соответствующую работу по корректировке поведения операторов и техники, которая иногда тоже вносит свою лепту в непродуктивность процесса.

Если вам интересно провести такой анализ и увеличить эффективность работы кол-центра, то я с удовольствием вам помогу.

Для заявки на проведение этой работы, обращайтесь на admin@fsecrets.ru. Проведем аудит и предложим мероприятия по повышению эффективности.

Удачи вам и эффективных решений!