Сегодня немного поговорим об интересном опыте, который мы прошли создавая рекомендательный движок для продвижения VOD (Видео по запросу). Один из операторов проводил конкурс среди поставщиков подобных решений и мы с командой единомышленников решили сделать такой сервис с нуля самостоятельно. Мы изучили конкурентов на рынке и нашли для себя хорошую нишу, чем мы можем отличаться. Я выступал в качестве эксперта по моделированию и прекрасно понимал предметную область.

Многие решения используют, как правило, алгоритм колоборативной фильтрации для формирования рекомендации. Но у него есть значительный недостаток в виде проседания при холодном старте. Т.е. если статистики телесмотрения очень мало, то рекомендации не будут в себе содержать фильмов, которые не разу не смотрели, иногда срок жизни в библиотеке достаточно мал, чтобы окупиться за время нахождения в библиотеке, поэтому его очень важно активно продвигать через интерфейс приставки.

Помимо поисковых рекомендаций, мы каждую единицу контента описали множеством тегов. Теперь даже не имея статистики смотрения мы можем показывать очень схожий по жанру фильм, что решило проблему холодного старта.

Также мы сделали социальную рекомендацию, когда пользователь видит что смотрит его сосед по дому или пользователь с похожим профилем потребления. Кроме этого, мы предложили инструмент для продвижения контента, когда рейтинг смотрибельности искусственно накручивается, чтобы продвигать определенный контент, но делать это незаметно для пользователей, чтобы не раздражать. Мы научились выделять контент из линейного контента на основе тегов EPG (электронной программы передач) и делать рекомендации линейного контента, с напоминанием когда будет его любимый фильм или передача или матч любимой команды. Мы научились формировать ленту по интересам пользователей, учитывать что в домохозяйстве может быть несколько членов семьи, а соответственно и профилей смотрения. Также мы научились строить рекомендации для приставок, с которых статистики смотрения не собирается, на основе профиля потребления Интернет с DPI, если абонент принадлежит оператору.

Но самое интересное, что мы предложили, это интерфейс для контент менеджера, который еще до покупки новой порции фильмов, может спрогнозировать количество просмотров на той абонентской базе что есть и предсказать на сколько каждая единица контента окупиться.

Мы верим, что это решение может найти своего заказчика, и сделает телесмотрение еще более интересным для абонентов.

Если вам интересно такое решение, готовы провести демонстрацию.

Удачи вам и следите за обновлением в блоге!