Сегодня я хочу поговорить еще об одном типе анализа, который имеет прикладное значение для предприятия, а именно XYZ-анализ.

XYZ-анализ позволяет произвести классификацию ресурсов компании в зависимости от характера их потребления и точности прогнозирования изменений в их потребности. Алгоритм проведения можно представить в четырёх этапах:

  1. Определение коэффициентов вариации* для анализируемых ресурсов;
  2. Группировка ресурсов в соответствии с возрастанием коэффициента вариации;
  3. Распределение по категориям X, Y, Z.
  4. Графическое представление результатов анализа.

* Коэффициент вариации — показывает, какую долю среднего значения этой величины (среднее арифметическое) составляет ее средний разброс (усредненное отклонение от среднего арифметического). Чем меньше величина коэффициента вариации, тем точнее Вы можете спрогнозировать величину.

Категория X — ресурсы характеризуются стабильной величиной потребления, незначительными колебаниями в их расходе и высокой точностью прогноза. Значение коэффициента вариации находится в интервале от 0 до 10 %.

Категория Y — ресурсы характеризуются известными тенденциями определения потребности в них (например, сезонными колебаниями) и средними возможностями их прогнозирования. Значение коэффициента вариации — от 10 до 25 %.

Категория Z — потребление ресурсов нерегулярно, какие-либо тенденции отсутствуют, точность прогнозирования невысокая. Значение коэффициента вариации — свыше 25 %.

Реальное значение коэффициента вариации для разных групп может отличаться по следующим причинам:

  • сезонность продаж,
  • проводимые акции,
  • дефицит каких-либо ресурсов и т. д.

Чем точнее Вы спрогнозируете необходимые ресурсы тем больше оборачиваемость, меньше затовариваемость.

В некоторых случаях XYZ-анализ можно заменить ABC-анализом по количеству обращения (покупок), так как по закону больших чисел, потребление товаров, которые продаются чаще, проще прогнозировать.

Как правило, XYZ-анализ применяют в комбинации с каким либо другим методом. Так как сам по себе он позволяет определить лишь вероятность появления большой погрешности при прогнозе.

Удачи в применении!